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Abstract

Purpose – This paper aims to provide a validation of a state-of-the-art methodology for computing
three-dimensional transitional flows in turbomachinery.

Design/methodology/approach – The Reynolds-averaged Navier-Stokes equations for
compressible flows are solved. Turbulence is modeled using an explicit algebraic stress model and
k 2 v turbulence closure. A numerical method has been developed, based on a cell-centered finite
volume approach with Roe’s approximate Riemann solver and formally second-order-accurate MUSCL
extrapolation. The method is validated versus two severe test cases, namely, the subsonic flow
through a turbine cascade with separated-flow transition; and the transonic flow through a compressor
cascade with transitional boundary layers, shock-induced separation and corner stall. For the first test
case, the transition model of Mayle for separated flow has been employed, whereas, for the second one,
the transition has been modeled employing the Abu-Ghannam and Shaw correlation.

Findings – The comparison of numerical results with the experimental data available in the
literature shows that, for such complex flow configurations, an improved numerical solution could be
achieved by employing transition models. Unfortunately, the available models are case-dependent,
each of them being suitable for specific applications.

Originality/value – A state-of-the-art numerical methodology has been developed and applied to
compute very complex flows in turbomachinery. Through an original analysis of the results, the
merits and limits of the considered approach have been assessed. The paper points up the fundamental
role of transition modeling for turbomachinery flow simulations.

Keywords Finite volume methods, Compressible flow, Turbines, Turbulence, Transition management,
Separation

Paper type Research paper

Introduction
Nowadays Computational Fluid Dynamics (CFD) plays a twofold role in the
development of modern turbomachinery insofar as it is routinely employed to reduce
design time and costs of the components and it is also employed to achieve a deeper
understanding of the basic physics of complex flow phenomena which are crucial to
design improved engines. Therefore, the validation of the numerical methods and their
application to geometries and flow configurations of increasing complexity is of
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fundamental interest. The present work provides a validation of a state-of-the-art
method for the solution of the Reynolds-Averaged Navier-Stokes (RANS) equation
versus two severe three-dimensional test cases involving complex flow phenomena
representing a challenge for CFD such as the boundary-layer transition from laminar to
turbulent flow and the shock/boundary-layer interaction. The influence of such
phenomena on the performance of modern engines is quite relevant: the role of
laminar-turbulent transition in gas-turbine engines is nowadays widely recognized
(see, e. g. the review of Mayle, 1991), and the shock/boundary-layer interaction problem
has been studied for more than 50 years due to its ubiquitous presence in high-speed
engine components (Dolling, 2001).

In many turbomachinery flows, although the main stream can be highly turbulent,
the boundary layers may be either laminar or turbulent and transition mainly occurs
by-passing the “natural” amplification of Tollmien-Schlichting waves due to the
typical high level of free-stream turbulence intensity. The performance of turbines
(especially low-pressure ones) and compressors can be highly influenced by transition
because in many cases such a phenomenon may be crucial for the generation of large
separation regions which have a remarkable impact on losses. Therefore, the modeling
of transition represents a fundamental issue for the improvement of the performance of
modern turbomachinery but it is also a formidable task to achieve because the
transition process involves a wide range of scales and it is very sensitive to physical
flow features such as pressure gradients (which can be very high in the presence of
shocks) and free-stream turbulence, as well as to numerical boundary conditions. The
basic mechanism of boundary-layer transition under different flow conditions can be
studied using the direct numerical simulation and the large eddy simulation for
moderate values of the Reynolds number but, unfortunately, due to their prohibitive
computational cost, such techniques are not feasible for the higher Reynolds numbers
and complex geometries encountered in most turbomachinery flows. In such cases, a
numerical model based on the solution of the RANS equations is needed. Such models
are capable of predicting with a good level of accuracy only the mean thermodynamic
variables and, in spite of the lack of physical details, they can achieve a good level of
reliability for the predictions of specific complex-flow configurations employing
turbulence models based on two transport equations. Nevertheless, in spite of the
efforts of several researchers aimed at developing low-Reynolds number turbulence
models with some built-in transition modeling capability, such models have been
proven inadequate for predicting the transition under general flow conditions (Westin
and Henkes, 1997; De Palma, 2002). Current research efforts aim at developing
transition models based on the concept of intermittency, which represents the fraction
of time the flow is turbulent (Mayle, 1991). The most common way to couple the
transition model with the turbulence model is to multiply the eddy viscosity coefficient
times the intermittency coefficient, even if such a simple approach could produce
considerable errors in the calculations of the shear stresses (Mayle, 1991). Moreover,
several methods have been proposed to compute the intermittency coefficient, which
are based on algebraic correlations (Mayle, 1991; Michelassi et al., 1999) or on the
solution of an additional transport equation (Cho and Chung, 1992; Suzen and Huang,
2000; Steelant and Dick, 2001).

During the last years, the author has developed a methodology for the solution of
the RANS equations (De Palma et al., 2001), using the low-Reynolds-number k 2 v
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turbulence model (Wilcox, 1998), which then has been improved (De Palma, 2000) by
using the explicit algebraic stress model (EASM) of Gatski and Speziale (1993). The
present work describes the extension of the above numerical method to the calculations
of separated transitional flows by using the transition criteria proposed by Mayle
(1991) and by Abu-Ghannam and Shaw (1980). The three-dimensional compressible
flows through a linear turbine cascade and through a linear compressor cascade have
been considered. The first test case consists in the subsonic flow through a
low-pressure turbine, with separated-flow transition occurring at the rear part of the
suction side of the blade. Such a test-case is suitable for validating the separated-flow
transition correlation of Mayle (1991). Whereas, the second test case considers the flow
through a transonic compressor in which a complex shock/boundary-layer interaction
causes the separation of the boundary-layer at the suction side of the blade and a large
corner stall. For the simulation of such a flow, the Abu-Ghannam and Shaw (1980)
correlation, with Drela’s (1995) modification, has been considered to predict the
transition onset and the algebraic model proposed in Michelassi et al. (1999) has been
employed to compute the intermittency coefficient. For both test cases, results obtained
employing the EASM, with and without transition model, are compared and validated
versus experimental data available in the literature (Hildebrandt and Fottner, 1999;
Weber et al., 2001; Kugeler et al., 2001). The reliability of the considered transition
models is assessed and the sensitivity of the numerical solution to the transition is
investigated.

In the following sections, firstly an overview of the governing equations and of the
numerical methodology is given; then a thorough discussion of the flow features is
provided together with a critical comparison between numerical and experimental
data; finally some concluding remarks are drawn.

Governing equations
The RANS equations, written in terms of Favre mass-averaged variables and using the
k 2 v turbulence model (Wilcox, 1998), read:
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In equations (1-5), ui are the components of the velocity vector, p and r are the pressure
and the density, E and H are the specific total internal energy and the specific total
enthalpy, respectively, comprehensive of the turbulence kinetic energy, k, and v is the
turbulence specific dissipation rate. Moreover, m is the dynamic viscosity coefficient, mt

is the eddy viscosity coefficient, and t̂ij is the tensor of the viscous and Reynolds stresses:
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tij being the tensor of the Reynolds stresses, given as:

tij ¼ 2mt
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Finally, the energy fluxes are given as:

bi ¼ ujt̂ij þ
m
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where Pr and Prt are the laminar and turbulent Prandtl numbers, respectively. In the
present work, m is evaluated using Sutherland’s law whereas mt is computed according
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to the low-Reynolds k 2 v turbulence model (Wilcox, 1998), namely, mt ¼ a*rk=v; the
six closure parameters a* a, b * b, s * and s being defined as:

a* ¼
a
*

0 þ Ret=Rk

1 þ Ret=Rk

; a ¼
5

9

a0 þ Ret=Rv

1 þ Ret=Rv

a*
21
; ð9Þ

b* ¼
9

100

5=18 þ ðRet=RbÞ
4

1 þ ðRet=RbÞ
4

; b ¼ 3=40; s* ¼ s ¼ 1=2; ð10Þ

a*0 ¼ b=3; a0 ¼ 1=10; Rb ¼ 8; Rk ¼ 6; Rv ¼ 2:7; ð11Þ

where Ret ¼ rk=vm: Finally, the equation of state for perfect gases has been employed
to complete the set of the governing equations.

Standard characteristic boundary conditions are imposed at inflow and outflow
boundaries, namely: at inlet points, total enthalpy, total pressure, flow angle,
turbulence kinetic energy and turbulence specific dissipation rate are imposed whereas
the Riemann invariant associated with the outgoing characteristic wave is
extrapolated from the computational domain; at outlet points, the pressure is
prescribed and the Riemann invariants associated with the outgoing characteristic
waves are extrapolated from the computational domain. Furthermore, at solid wall, the
no-slip boundary condition is used and the turbulence kinetic energy is set to zero. The
pressure and the temperature at the wall are computed by forcing zero normal
gradients. Concerning the value of v at the wall, the following condition has been
employed (Menter and Rumsey, 1994): vw ¼ 60n=bðDywÞ

2; where n is the kinematic
viscosity coefficient and Dyw is the distance between the wall and the first grid point
away from the wall. In the present work, non-periodic C-grids are employed, namely
the two edges of the branch-cut have a different number of cells. This feature allows to
reduce the distortion of the mesh in the blade channel. A conservative treatment of the
boundary conditions at the branch-cut is applied by using two rows of phantom cells,
overlapping to the grid, in which the dependent variables are evaluated by linear
interpolation.

Explicit algebraic turbulence model
The explicit nonlinear constitutive equation, obtained by Gatski and Speziale (1993),
has been considered for the Reynolds stress tensor:

tij ¼ 2mt Sij 2
1

3
Skkdij þ
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v
ðSikWkj þ SjkWkiÞ þ
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v
SikSkj 2

1

3
SklSkl

� �� �
2

2

3
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ð12Þ

where Sij and Wij are the mean-rate-of-strain tensor and the mean-vorticity tensor,
respectively. In equation (12):

mt ¼ ra*Cmk= C0
mv

� �
; ð13Þ
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where:

Cm ¼
3ð1 þ h 2Þa1

3 þ h 2 þ 6h2j 2 þ 6j 2
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v 2
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v 2
ðWijWijÞ:

The closure coefficients a1-a5 are evaluated as follows:
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2
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1

0:5C1 þ C5 2 1
;

with C1 ¼ 3; C2 ¼ 0:8; C3 ¼ 1:75; C4 ¼ 1:31; C5 ¼ 2: Such values correspond to the
pressure-strain correlation model of Launder et al. (1975), already employed by Gatski
et al. (1995) in conjunction with the EASM of Gatski and Speziale (1993).

Transition models
Mayle’s model for separated-flow transition
The base mechanism of the separated-flow transition has been described in detail in
Mayle (1991). The essential features are shown in Figure 1, which provides a
time-averaged representation of the transition region. After flow separation, there is a
low-pressure-gradient region (upstream region) followed by a pressure recovery
(downstream region). The upstream region is composed by a laminar shear flow,
between the abscissae xs (separation) and xt (transition onset), and a transition region
between the abscissae xt and xT (end of transition). At the downstream region, the flow
is turbulent and reattaches at xr. Considering different sets of experimental data, Mayle
(1991) proposed the following correlation:

ðRexÞst ¼ 1; 000Re0:7
us ; ð14Þ

Figure 1.
Flow around a separation
bubble from Mayle (1991)
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where the Reynolds numbers are defined as:

ðRexÞst ¼
Usðxt 2 xsÞ

ns
and Reus ¼

Usus

ns
; ð15Þ

Us, us, and ns being the free-stream velocity, the momentum thickness and the
kinematic viscosity at the separation point. Using equation (14), it is possible to
evaluate the distance between the transition and the separation point, xt 2 xs; provided
that the conditions at the separation point are known. Furthermore, Mayle provides a
second experimental correlation:

ðRexÞLT ¼
UsðxT 2 xtÞ

ns
¼ 400Re0:7

us ; ð16Þ

which enables to estimate the length of the transition region, xT 2 xt: In such a region
the intermittency factor, I, is evaluated as:

I ¼ 1 2 exp 20:412
ðx 2 xtÞ

2

ðx75 2 x25Þ
2

� �
; ð17Þ

where x25 and x75 correspond to the locations where I is equal to 0.25 and 0.75,
respectively, and I ¼ 0:99 corresponds to the abscissa xT (Mayle, 1991). Inserting such a
value in equation (17), and knowing ðxT 2 xtÞ from equation (14), the difference ðx75 2
x25Þ is evaluated. Therefore, for transitional-flow computations, the eddy viscosity is
defined as mtran ¼ mt: Equation (17) is an experimental correlation due to Dhawhan and
Narasimha (1958) which describes the growth of turbulence near walls. In the present
work no attempt has been made to improve the model recalibrating the above
correlation for each turbulence model employed. Finally, concerning the iteration
procedure employed in the present work, the computations start with the intermittency
factor equal to zero everywhere. At the beginning, the flow separates from the blade
surface near the trailing edge. Knowing the flow characteristics at the separation point,
i.e. Us, us and ns, it is possible to compute xt, using the correlation equation (14), and the
length of transition, xT 2 xt; from the correlation equation (16). Iterating, the separation
point shifts upstream along the suction side until it reaches a stable location; hence, the
separation bubble, transition point, and transition length become stable.

Model based on the correlation of Abu-Ghannam and Shaw
The correlation of Abu-Ghannam and Shaw (1980) is based on the evaluation of the
Reynolds number:

Reu ¼
uu1

n
; ð18Þ

where u is momentum thickness of the boundary layer, n is the kinematic viscosity and
u1 is the local velocity magnitude at the edge of the boundary layer. It is noteworthy
that, in this calculations, the edge of the boundary layer is defined as the first point
from the wall at which the magnitude of the velocity varies less then 1 percent.
According to the correlation proposed by Abu-Ghannam and Shaw (1980), modified in
Drela (1995), the transition model evaluates a critical value, Reu,t, which indicates the
location of the transition onset, as:
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Reu;t ¼ 163 þ 74:3 0:55 tanh
10

H
2 5:5

� �� �
ð0:94ncrit þ 1Þ; ð19Þ

where H is the shape factor of the boundary layer and:

ncrit ¼ 28:43 2 2:4 ln
Tu

100

� �
; ð20Þ

accounts for the influence of the free-stream turbulence intensity, Tu ¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k=3u2

1

p
:

Finally, the intermittency function, I, which is employed to compute the eddy viscosity
coefficient, ~mt; in transitional flow calculations, namely:

~mt ¼ Imt; ð21Þ

is evaluated using the expression proposed in Michelassi et al. (1999) as:

I ¼
25

25 þ 275 1 2 sin p
2

Reu2Reu;t
Reu;t

� �� �
0
@

1
A

a

; ð22Þ

where a ¼ 3 for the present computations.
It is noteworthy that, for the three-dimensional-flow configurations considered in

this work, the above transition models have been employed at each spanwise location
considering the flow as two-dimensional.

Numerical method
The Navier-Stokes equations are discretized by a cell-centred finite-volume method
employing structured grids. The numerical convective fluxes at each cell interface are
evaluated using a flux difference splitting approach based on Roe’s approximate
Riemann solver. The left and right states of the Riemann problems are reconstructed
using a formally second-order-accurate fully upwind MUSCL extrapolation. The
min-mod limiter function is employed in order to damp spurious oscillations. The
diffusive terms are evaluated by second-order-accurate central differencing. Time
discretization is based on an explicit (four stage) Runge-Kutta scheme with coefficients:
a1 ¼ 1=4; a2 ¼ 1=3; a3 ¼ 1=2: Moreover, in order to accelerate the convergence
towards the steady-state solution, three well known methods are used, namely: local
time stepping, implicit residual smoothing and multigrid strategy. Such a procedure
allows the use of CFL ¼ 3 for the present test cases. In particular, a standard FAS
multigrid strategy (Brandt, 1982) is employed to drive the residual of the governing
equations towards machine zero. A V-cycle has been used, with three grid levels.
Linear interpolations are employed to transfer the corrections from each coarse grid to
the finer one.

Turbine cascade
The three-dimensional flow through the linear turbine cascade T106, has been
considered, the blade having a typical midspan profile of a low-pressure turbine rotor
(see Hildebrandt and Fottner (1999) for geometrical details). The flow is subsonic with
isentropic exit Mach number equal to 0.59 and Reynolds number, based on the chord
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length, c, and on exit conditions, equal to 5 £ 105; the inlet flow angle with respect to
the axial (ax) direction is equal to 37.78. Steady-flow computations have been
performed with inlet turbulence intensity equal to 5.8 percent and inlet turbulence
length scale is equal to 0.02c in order to compare the results with the experimental data
reported in Hildebrandt and Fottner (1999). Moreover, the measured (Hildebrandt and
Fottner, 1999) total-pressure spanwise profile has been prescribed at inlet points. The
computational domain (half span) has been discretized using a C-grid with 384 £ 40 £
48 cells, which has been selected with a grid-refinement analysis and provides
grid-converged results. The average non-dimensional distance of the first cell center
from the blade surface is about yþ ¼ 1; whereas at the sidewall yþ ¼ 2: Two set of
results are provided, obtained without and with the transition model of Mayle (1991).
Figures 2 and 3 show the contours of the loss coefficient defined as z ¼
ð pt1 2 ptÞ=ð pt1 2 p2Þ; where pt is the total pressure and the subscripts 1 and 2
indicate inlet and outlet conditions, respectively. These figures refer to a plane located
at x=cax ¼ 1:5; the value of z corresponding to each contour level being shown in
Figure 3. Figure 2 provides the experimental data (Hildebrandt and Fottner, 1999); the
distribution of the loss coefficient clearly shows a large two-dimensional flow-region at
midspan and is characterized by three loss cores. The principal one (LC1) originates
between the suction side branch of the horseshoe vortex and the passage vortex; the
loss core LC2 is directly related to the passage vortex, whereas the third loss core, LC3,
is due to the counter-rotating corner-vortex induced by the passage vortex in the corner
between the sidewall and the suction side (Hildebrandt and Fottner, 1999). All these
features are well captured by both numerical solutions shown in Figure 3. It
noteworthy that both computations overestimate the losses, nevertheless, employing
the transition model, the local peak value of the loss coefficient in the wake ðz ¼ 0:12Þ
is closer to the experimental data ðz ¼ 0:09Þ: For the same plane located at x=cax ¼ 1:5;
Figure 4 shows the spanwise distributions of the pitchwise-averaged exit flow angle,

Figure 2.
Loss-coefficient contours

ðDz ¼ 0:03Þ : experimental
data (Hildebrandt and

Fottner, 1999)
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b2 ¼ arctanðu=vÞ (u and v being the axial and pitchwise velocity components,
respectively), versus the non-dimensional spanwise coordinate, z/s, s being the blade
span (300 mm). Both numerical results agree quite well with the experimental data of
Hildebrandt and Fottner (1999).

Finally, Figure 5 shows two three-dimensional views of the stream traces close to
the suction-side surface of the blade, computed employing the EASM without and with
transition, respectively. The main difference between the two solutions is the
separation bubble is clearly detected when employing the transition model. Both
solutions show the evolution of the passage vortex and of the suction-side branch of the
horseshoe vortex along the suction surface. Furthermore, the transitional-flow

Figure 3.
Loss-coefficient contours
ðDz ¼ 0:03Þ : fully
turbulent flow
computations (left) and
transitional flow
computations (right)

Figure 4.
Spanwise distributions of
the averaged flow
angle, b82
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computation also shows that the suction side leg of the horseshoe vortex interacts with
the separation bubble. This is a typical flow configuration for low-pressure turbine
cascades in which high-loss fluid is fed into the separation bubble whereas the rest is
convected downstream with the vortex.

Compressor cascade
The transonic flow through a linear compressor cascade has been considered, with low
flow-turning and a strong shock wave at the blade passage inlet. The geometry of the
cascade and the test conditions have been provided by DLR together with the
experimental data obtained using the transonic wind tunnel at DLR-Cologne (Weber
et al., 2001; Kugeler et al., 2001). The test condition considered in the present work
corresponds to inlet Mach number equal to 1.09 at midspan, inlet flow angle equal to
147.18 and Reynolds number, based on the chord length and inlet flow conditions,
equal to 1:9 £ 106: The inlet endwall boundary-layer profile, measured at x=c ¼ 0:85
ahead of the leading edge, has been also provided by DLR. For the numerical
simulation, the total pressure, the total temperature and the flow angle are prescribed
at inlet points, whereas the value of the static pressure is assigned at outlet points in
order to match the inlet Mach number. Furthermore, at inlet points, turbulence
intensity equal to 1 percent and mixing length equal to 1 percent of the chord are
imposed. The computational domain (half span) has been discretized using a
structured C-grid with 320 £ 48 £ 48 cells. Such a grid has been selected with a
grid-refinement analysis and provides grid-converged results.

The average non-dimensional distance of the first cell center from the blade surface,
y þ , is about equal to one, whereas at the endwall yþ . 3:

Three computations have been performed:

(1) a fully-turbulent-flow (FTF) computation;

(2) a first transitional-flow (TF1) computation, employing the Abu-Ghannam and
Show transition model;

(3) a second transitional-flow (TF2) computation, forcing an abrupt transition just
behind the shock.

Figure 5.
Stream traces at the

suction surface: EASM
with (left) and with (right)

transition model
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Experimental evidence that there is a laminar shock-induced separation motivates the
latter TF2 computation. It is noteworthy that, the transition criterion of Mayle (1991),
which was designed for flows without shocks, cannot be employed for this test case
because it leads to a large separation at the suction side. Furthermore, also due to the
presence of the bow shock ahead of the blade which contributes to amplify the
turbulence level, the free-stream turbulence intensity inside the blade channel is always
greater than 0.6 percent, therefore, it appears reasonable to employ the by-pass
transition model of Abu-Ghannam and Show. Table I shows the pitchwise-averaged
values at midspan of the static pressure ratio, p2=p1 of the exit Mach number, M2, and
of the exit flow angle, b2, defined as b ¼ arctanðv=uÞ þ 908; u and v being the axial and
pitchwise velocity components, respectively. Section 1 is located at x=cax ¼ 20:25;
ahead of the cascade, whereas section 2 is at x=cax ¼ 1:43; downstream of the cascade.
Table I provides a comparison between experimental and computed results which
demonstrates the good level of accuracy achieved for such averaged predicted values.
Figure 6 shows the Mach number contours at midspan, computed employing the
Abu-Ghannam and Shaw transition model. Such a figure shows that, due to the
supersonic inflow velocity, a shock wave is generated at the inlet of the cascade which
impinges on the suction side of the blade, interacting with both the blade and
the endwall boundary layers. Figures 7-9 show the three-dimensional views of the

exp. FTF TF1 TF2

p2/p1 1.45 1.414 1.438 1.438
M2 0.7014 0.7039 0.715 0.716
b2 136.58 137.68 137.18 136.88

Table I.
Average exit angle, exit
Mach number and static
pressure ratio, at
midspan

Figure 6.
Transitional flow (TF1):
Mach number contours at
z=h ¼ 0:5 ðDM ¼ 0:05Þ
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isentropic Mach number contours at the wall. In all computations, the shock is sharper
at midspan and moves upstream from midspan towards the endwall, in agreement
with the experimental data (Weber et al., 2001).

Nevertheless, the computed curvature of the shock is slightly overestimated in all
calculations. In fact, Figure 10, which shows the numerical and measured isentropic
Mach number distributions along the blade at the spanwise section corresponding to
z=h ¼ 0:071; shows that, for transitional flow computations, the position of the shock
is slightly shifted towards the leading edge; whereas, Figure 11, which refers to
midspan ðz=h ¼ 0:5Þ; shows a good agreement with the experimental data for all
computations. However, TF2 provides a better agreement with respect to the
experiments in the region of higher Mach number. Experimental data clearly show a
flattening of the isentropic Mach number distribution around the peak value which is
due to the laminar shock-induced separation. Concerning the computations, on one

Figure 7.
Turbulent flow: isentropic
Mach number contours at

wall ðDMis ¼ 0:02Þ

Figure 8.
Transitional flow (TF1):
isentropic Mach number

contours at wall ðDMis ¼
0:02Þ
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hand, for the FTF computation the suction-side boundary-layer is completely
turbulent; on the other hand, for the TF1 computation the transition is predicted ahead
of the shock, so that in both cases a shock/turbulent-boundary-layer interaction is
computed. This explains the discrepancy between experimental and numerical data in
the region where the shock impinges on the suction side. Such a behavior is confirmed
by the TF2 computation: forcing the transition just behind the shock wave improves
the corresponding numerical solution – see the dashed-dot line in Figure 11 – in the
region of the shock/boundary-layer interaction, providing a reduced Mach number
peak which is very close to the experimental data.

The numerical results indicate the presence of a separation bubble induced by the
shock, as shown by the stream traces at the suction side of the blade shown in

Figure 9.
Transitional flow (TF2):
isentropic Mach number
contours at wall ðDMis ¼
0:02Þ

Figure 10.
Isentropic Mach number
distribution along the
blade z=h ¼ 0:071
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Figures 12-14. The extension of the bubble is in good agreement with the experimental
data shown in Figure 15, which show separation from 49 to 69 percent of the chord. All
numerical results show a shorter bubble: from 55 to 72 percent, from 52 to 68 percent
and from 50 to 68 percent of the chord, for the FTF, TF1 and TF2 computations,
respectively. Figures 12-14 also show the structure of the shock-induced corner stall
which reasonably agrees with the oil streak lines shown in Figure 15.

The computed total pressure ( pt) contours at the axial plane located at x=cax ¼ 0:86
(inside the blade passage) are shown in Figures 16 and 17. They can be compared
with the experimental distribution of the total pressure at the same location
(Weber et al., 2001), shown in Figure 18. From such figures it is possible to notice the
extension of the low-total-pressure region and of the wake which are in good agreement
with the experimental data. It is noteworthy that the transitional-flow computations
can predict the reduction of the boundary-layer thickness in the spanwise direction

Figure 11.
Isentropic Mach number

distribution along the
blade at z=h ¼ 0:5

Figure 12.
Turbulent flow: stream
traces close to the wall
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Figure 13.
Transitional flow (TF1):
stream traces close to the
wall

Figure 14.
Transitional flow (TF2):
stream traces close to the
wall

Figure 15.
Oil streak lines at the
suction side (Weber et al.,
2001)
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close to the corner stall. The result obtained forcing the transition (TF2) is not shown
because it is very close to Figure 17.

Figures 19 and 20 show the spanwise distributions of the average
total-pressure-loss coefficient, v ¼ ð pt1 2 ptÞ=ð pt1 2 p1Þ; and the average flow angle,
b2, at a plane located at x=cax ¼ 1:43; downstream of the cascade. For both
experimental (Weber et al., 2001) and numerical results, mass, momentum and energy
are averaged in the pitchwise direction at each spanwise location. The loss coefficient

Figure 18.
Total pressure

distribution at x=cax ¼
0:86 : experimental data

(Weber et al., 2001)

Figure 17.
Transitional flow (TF1):

total pressure contours at
x=cax ¼ 0:86; Dð pt=pt1 ¼

0:025Þ

Figure 16.
Turbulent flow: total
pressure contours at

x=cax ¼ 0:86 Dð pt=pt1 ¼
0:025Þ
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slightly decreases from midspan ðz=h ¼ 0:5Þ to z=h ¼ 0:2 and than it increases
approaching the endwall. Numerical results predict quite well such a behavior and are
in a good quantitative agreement with the experimental data, as also shown in Table II
which provides the values of v at four spanwise locations, for completeness. The flow
angle, b2, shows a continuous increase towards the endwall. This is the typical
behavior of highly staggered cascade in which the separation of the boundary layer at
the endwall suppresses the classical overturning due to the crossflow from pressure
side to suction side. The oil-flow picture at the endwall, provided in Weber et al. (2001)
and shown in Figure 21, clearly demonstrates the high deviation of the flow around the
trailing edge with the formation of a separation line and a focus close to the rear part of

exp. FTF TF1 TF2

z=h ¼ 0:071 0.26 0.265 0.28 0.28
z=h ¼ 0:15 0.13 0.15 0.197 0.2
z=h ¼ 0:3 0.075 0.1 0.066 0.066
z=h ¼ 0:5 0.095 0.12 0.1 0.095

Table II.
Pitchwise-averaged loss
coefficient, v

Figure 20.
Spanwise distributions of
the averaged angle, b82

Figure 19.
Spanwise distributions of
the averaged
loss-coefficient
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the suction side. The stream traces obtained with the TF1 computation, shown in
Figure 22, show a very similar behavior, the location of the focus being predicted quite
accurately.

Concluding remarks
A state-of-the-art methodology for computing three-dimensional compressible viscous
flows has been validated versus two severe test cases. Computations are based on the
solution of the RANS equations with k 2 v turbulence closure and an explicit algebraic
stress model. Furthermore, two models for laminar-turbulent boundary-layer
transition have been considered, namely, the one for separated-flow transition due to
Mayle and the Abu-Ghannam and Shaw model. The governing equations have been
discretized in space by a cell-centred finite-volume method based on Roe’s flux
difference splitting, with second-order-accurate upwind space discretization. Explicit
Runge-Kutta time integration has been employed together with residual smoothing
and a multigrid strategy to accelerate convergence towards steady-state.

The first test case consists in the subsonic flow through a low-pressure turbine, with
separated-flow transition occurring at the rear part of the suction side of the blade.
Computations demonstrate that only using a sufficiently accurate transition model it is

Figure 22.
Stream traces at the

endwall: TF1 computation

Figure 21.
Stream traces at the

endwall: experimental
data (Weber et al., 2001)
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possible to capture the suction-separation bubble. Furthermore, transitional-flow
calculations provide an improved prediction of the loss-coefficient distribution
downstream of the cascade with respect to fully turbulent calculations.

The second test case considers the flow through a transonic compressor cascade in
which a complex shock/boundary-layer interaction causes the separation of the
boundary-layer at the suction side of the blade and a large corner stall. Three
calculations have been performed:

(1) without transition model (fully-turbulent-flow calculation);

(2) with transition model; and

(3) forcing ad hoc the transition.

The results have been compared with the experimental data available in the literature, a
good prediction of the general properties of the flow being achieved. Nevertheless, some
discrepancies with respect to the experimental data have been highlighted concerning the
local behavior of the flow close to the separation bubble at the suction side of the blade.
Such a separation is induced by the shock impinging on the suction side. The calculations
show that the fully-turbulent-flow computation does not predict correctly the
shock/laminar-boundary-layer interaction so that the peak value of the isentropic Mach
number and the length of the separation bubble differ from the experimental data. The use
of the Abu-Ghannam and Shaw transition model only slightly improves the solution,
because transition is predicted too early, before the shock. Finally, computations
performed forcing ad hoc the transition demonstrate that the present numerical method
can provide a solution closer to the experimental data in the shock/boundary-layer
interaction region. This confirms that the discrepancies between numerical and
experimental data are essentially due to the inadequacy of the transition model.

The results provided in the present paper indicate that, for such complex flow
configurations, an improved numerical solution could be achieved by employing
transition models. Unfortunately, the available models are still too much
case-dependent, and each of them is suitable for specific applications. The
development of improved transition models, suitable for a wide range of flow
configurations, remains a formidable task to be pursued in the future. At this purpose,
more detailed and accurate experimental data, together with LES and DNS results, will
be crucial to gain further knowledge of the basic mechanism of transition.
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